isaac_ros_yolov8#
Source code available on GitHub.
Quickstart#
Set Up Development Environment#
- Set up your development environment by following the instructions in getting started. 
- (Optional) Install dependencies for any sensors you want to use by following the sensor-specific guides. - Note - We strongly recommend installing all sensor dependencies before starting any quickstarts. Some sensor dependencies require restarting the development environment during installation, which will interrupt the quickstart process. 
Download Quickstart Assets#
- Download quickstart data from NGC: - Make sure required libraries are installed. - sudo apt-get install -y curl jq tar - Then, run these commands to download the asset from NGC: - NGC_ORG="nvidia" NGC_TEAM="isaac" PACKAGE_NAME="isaac_ros_yolov8" NGC_RESOURCE="isaac_ros_yolov8_assets" NGC_FILENAME="quickstart.tar.gz" MAJOR_VERSION=4 MINOR_VERSION=0 VERSION_REQ_URL="https://catalog.ngc.nvidia.com/api/resources/versions?orgName=$NGC_ORG&teamName=$NGC_TEAM&name=$NGC_RESOURCE&isPublic=true&pageNumber=0&pageSize=100&sortOrder=CREATED_DATE_DESC" AVAILABLE_VERSIONS=$(curl -s \ -H "Accept: application/json" "$VERSION_REQ_URL") LATEST_VERSION_ID=$(echo $AVAILABLE_VERSIONS | jq -r " .recipeVersions[] | .versionId as \$v | \$v | select(test(\"^\\\\d+\\\\.\\\\d+\\\\.\\\\d+$\")) | split(\".\") | {major: .[0]|tonumber, minor: .[1]|tonumber, patch: .[2]|tonumber} | select(.major == $MAJOR_VERSION and .minor <= $MINOR_VERSION) | \$v " | sort -V | tail -n 1 ) if [ -z "$LATEST_VERSION_ID" ]; then echo "No corresponding version found for Isaac ROS $MAJOR_VERSION.$MINOR_VERSION" echo "Found versions:" echo $AVAILABLE_VERSIONS | jq -r '.recipeVersions[].versionId' else mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets && \ FILE_REQ_URL="https://api.ngc.nvidia.com/v2/resources/$NGC_ORG/$NGC_TEAM/$NGC_RESOURCE/\ versions/$LATEST_VERSION_ID/files/$NGC_FILENAME" && \ curl -LO --request GET "${FILE_REQ_URL}" && \ tar -xf ${NGC_FILENAME} -C ${ISAAC_ROS_WS}/isaac_ros_assets && \ rm ${NGC_FILENAME} fi 
- Download the model of your choice from Ultralytics YOLOv8. For this example, we use YOLOv8s. - cd Downloads && \ wget https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt 
- Convert the PyTorch model ( - .pt) to a general ONNX model (- .onnx). Export to ONNX following instructions given below or here. Then, convert the ONNX model to a TensorRT engine file (- .plan) using trtexec. Arguments can be specified for FP16 quantization during this step. You may use either model for inference. You can use netron to visualize the ONNX model and note input and output names and dimensions.- This can be done by first installing - ultralyticsand- onnxvia pip:- pip3 install --break-system-packages ultralytics pip3 install --break-system-packages onnx - Afterwards, convert the model from a - .ptfile to a- .onnxmodel using- ultralytics. This can be done by running:- python3 - Then within - python3, export the model to- .onnxformat:- >> from ultralytics import YOLO >> model = YOLO('yolov8s.pt') >> model.export(format='onnx') - Exit the interactive python shell, now convert the ONNX model to a TensorRT engine file using trtexec. - /usr/src/tensorrt/bin/trtexec --onnx=yolov8s.onnx --saveEngine=yolov8s.plan - Copy the generated - .onnxand- .planmodel into the designated location for Isaac ROS (- ${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8):- mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8 cp yolov8s.onnx ${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8 cp yolov8s.plan ${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8 
Build isaac_ros_yolov8#
- Activate the Isaac ROS environment: - isaac-ros activate
- Install the prebuilt Debian package: - sudo apt-get update - sudo apt-get install -y ros-jazzy-isaac-ros-yolov8 ros-jazzy-isaac-ros-dnn-image-encoder ros-jazzy-isaac-ros-tensor-rt 
- Install Git LFS: - sudo apt-get install -y git-lfs && git lfs install 
- Clone this repository under - ${ISAAC_ROS_WS}/src:- cd ${ISAAC_ROS_WS}/src && \ git clone -b release-4.0 https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_object_detection.git isaac_ros_object_detection 
- Activate the Isaac ROS environment: - isaac-ros activate
- Use - rosdepto install the package’s dependencies:- sudo apt-get update - rosdep update && rosdep install --from-paths ${ISAAC_ROS_WS}/src/isaac_ros_object_detection/isaac_ros_yolov8 --ignore-src -y 
- Build the package from source: - cd ${ISAAC_ROS_WS} && \ colcon build --symlink-install --packages-up-to isaac_ros_yolov8 --base-paths ${ISAAC_ROS_WS}/src/isaac_ros_object_detection/isaac_ros_yolov8 
- Source the ROS workspace: - Note - Make sure to repeat this step in every terminal created inside the Isaac ROS environment. - Since this package was built from source, the enclosing workspace must be sourced for ROS to be able to find the package’s contents. - source install/setup.bash 
Run Launch File#
- Continuing inside the Isaac ROS environment, install the following dependencies: - sudo apt-get update - sudo apt-get install -y ros-jazzy-isaac-ros-examples 
- Run the following launch file to spin up a demo of this package using the quickstart rosbag: - cd /workspaces/isaac_ros-dev && \ ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=yolov8 interface_specs_file:=${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_yolov8/quickstart_interface_specs.json \ engine_file_path:=${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8/yolov8s.plan 
- Open a second terminal inside the Isaac ROS environment: - isaac-ros activate
- Run the rosbag file to simulate an image stream: - ros2 bag play -l ${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_yolov8/quickstart.bag 
- Ensure that you have already set up your RealSense camera using the RealSense setup tutorial. If you have not, please set up the sensor and then restart this quickstart from the beginning. 
- Continuing inside the Isaac ROS environment, install the following dependencies: - sudo apt-get update - sudo apt-get install -y ros-jazzy-isaac-ros-examples ros-jazzy-isaac-ros-realsense 
- Run the following launch file to spin up a demo of this package using a RealSense camera: - ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=realsense_mono_rect,yolov8 \ engine_file_path:=${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8/yolov8s.plan 
- Ensure that you have already set up your ZED camera using ZED setup tutorial. 
- Continuing inside the Isaac ROS environment, install dependencies: - sudo apt-get update - sudo apt-get install -y ros-jazzy-isaac-ros-examples ros-jazzy-isaac-ros-stereo-image-proc ros-jazzy-isaac-ros-zed 
- Run the following launch file to spin up a demo of this package using a ZED Camera: - ros2 launch isaac_ros_examples isaac_ros_examples.launch.py \ launch_fragments:=zed_mono_rect,yolov8 \ engine_file_path:=${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8/yolov8s.plan \ interface_specs_file:=${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_yolov8/zed2_quickstart_interface_specs.json - Note - If you are using the ZED X series, replace zed2_quickstart_interface_specs.json with zedx_quickstart_interface_specs.json in the above command. 
Visualize Results#
- Open a new terminal inside the Isaac ROS environment: - isaac-ros activate
- Run the YOLOv8 visualization script: - ros2 run isaac_ros_yolov8 isaac_ros_yolov8_visualizer.py 
- Open another terminal inside the Isaac ROS environment: - isaac-ros activate
- Visualize and validate the output of the package with - rqt_image_view:- ros2 run rqt_image_view rqt_image_view /yolov8_processed_image - Your output should look like this:   
Troubleshooting#
Isaac ROS Troubleshooting#
For solutions to problems with Isaac ROS, please check here.
Deep Learning Troubleshooting#
For solutions to problems with using DNN models, please check here.
API#
Usage#
ros2 launch isaac_ros_yolov8 isaac_ros_yolov8_visualize.launch.py model_file_path:=<model_file_path> engine_file_path:=<engine_file_path> input_binding_names:=<input_binding_names> output_binding_names:=<output_binding_names> network_image_width:=<network_image_width> network_image_height:=<network_image_height> force_engine_update:=<force_engine_update> image_mean:=<image_mean> image_stddev:=<image_stddev> confidence_threshold:=<confidence_threshold> nms_threshold:=<nms_threshold>
Yolov8DecoderNode#
ROS Parameters#
| ROS Parameter | Type | Default | Description | 
|---|---|---|---|
| 
 | 
 | 
 | Name of the inferred output tensor published by the Managed NITROS Publisher. The decoder uses this name to get the output tensor. | 
| 
 | 
 | 
 | Detection confidence threshold. Used to filter candidate detections during Non-Maximum Suppression (NMS). | 
| 
 | 
 | 
 | NMS IOU threshold. | 
ROS Topics Subscribed#
| ROS Topic | Interface | Description | 
|---|---|---|
| 
 | Tensor list from the managed NITROS subscriber that represents the inferred aligned bounding boxes. | 
ROS Topics Published#
| ROS Topic | Interface | Description | 
|---|---|---|
| 
 | Aligned image bounding boxes with detection class. |