isaac_ros_yolov8
Source code on GitHub.
Quickstart
Set Up Development Environment
Set up your development environment by following the instructions in getting started.
Clone
isaac_ros_common
under${ISAAC_ROS_WS}/src
.cd ${ISAAC_ROS_WS}/src && \ git clone https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_common.git
(Optional) Install dependencies for any sensors you want to use by following the sensor-specific guides.
Warning
We strongly recommend installing all sensor dependencies before starting any quickstarts. Some sensor dependencies require restarting the Isaac ROS Dev container during installation, which will interrupt the quickstart process.
Download Quickstart Assets
Download quickstart data from NGC:
Make sure required libraries are installed.
sudo apt-get install -y curl tar
Then, run these commands to download the asset from NGC.
NGC_ORG="nvidia" NGC_TEAM="isaac" NGC_RESOURCE="isaac_ros_assets" NGC_VERSION="isaac_ros_yolov8" NGC_FILENAME="quickstart.tar.gz" REQ_URL="https://api.ngc.nvidia.com/v2/resources/$NGC_ORG/$NGC_TEAM/$NGC_RESOURCE/versions/$NGC_VERSION/files/$NGC_FILENAME" mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets/${NGC_VERSION} && \ curl -LO --request GET "${REQ_URL}" && \ tar -xf ${NGC_FILENAME} -C ${ISAAC_ROS_WS}/isaac_ros_assets/${NGC_VERSION} && \ rm ${NGC_FILENAME}
Download the model of your choice from Ultralytics YOLOv8. For this example, we use YOLOv8s.
cd Downloads && \ wget https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt
Convert the PyTorch model (
.pt
) to a general ONNX model (.onnx
). Export to ONNX following instructions given below or here. Arguments can be specified for FP16 quantization during this step. This ONNX model is converted to a TensorRT engine file and used with the Isaac ROS TensorRT node for inference. You can use netron to visualize the ONNX model and note input and output names and dimensions.This can be done by first installing
ultralytics
andonnx
via pip:pip3 install ultralytics pip3 install onnx
Afterwards, convert the model from a
.pt
file to a.onnx
model usingultralytics
. This can be done by running:python3
Then within
python3
, export the model:>> from ultralytics import YOLO >> model = YOLO('yolov8s.pt') >> model.export(format='onnx')
Exit the interactive python shell and copy the generated
.onnx
model into the designated location for Isaac ROS (${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8
):mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8 cp yolov8s.onnx ${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8
Build isaac_ros_yolov8
Launch the Docker container using the
run_dev.sh
script:cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Install the prebuilt Debian package:
sudo apt-get install -y ros-humble-isaac-ros-yolov8 ros-humble-isaac-ros-dnn-image-encoder ros-humble-isaac-ros-tensor-rt
Clone this repository under
${ISAAC_ROS_WS}/src
:cd ${ISAAC_ROS_WS}/src && \ git clone https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_object_detection.git
Launch the Docker container using the
run_dev.sh
script:cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Use
rosdep
to install the package’s dependencies:rosdep install --from-paths ${ISAAC_ROS_WS}/src/isaac_ros_object_detection --ignore-src -y
Build the package from source:
cd ${ISAAC_ROS_WS} && \ colcon build --symlink-install --packages-up-to isaac_ros_yolov8
Source the ROS workspace:
Note
Make sure to repeat this step in every terminal created inside the Docker container.
Since this package was built from source, the enclosing workspace must be sourced for ROS to be able to find the package’s contents.
source install/setup.bash
Run Launch File
Enter the Docker container in Jetson:
cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Continuing inside the Docker container, install the following dependencies:
sudo apt-get install -y ros-humble-isaac-ros-examples
Run the following launch file to spin up a demo of this package using the quickstart rosbag:
cd /workspaces/isaac_ros-dev && \ ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=yolov8 interface_specs_file:=${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_yolov8/quickstart_interface_specs.json \ model_file_path:=${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8/yolov8s.onnx engine_file_path:=${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8/yolov8s.plan
Open a second terminal inside the Docker container:
cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Run the rosbag file to simulate an image stream:
ros2 bag play -l ${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_yolov8/quickstart.bag
Ensure that you have already set up your RealSense camera using the RealSense setup tutorial. If you have not, please set up the sensor and then restart this quickstart from the beginning.
Continuing inside the Docker container, install the following dependencies:
sudo apt-get install -y ros-humble-isaac-ros-examples ros-humble-isaac-ros-realsense
Run the following launch file to spin up a demo of this package using a RealSense camera:
ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=realsense_mono_rect,yolov8 \ model_file_path:=${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8/yolov8s.onnx engine_file_path:=${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8/yolov8s.plan
Ensure that you have already set up your Hawk camera using the Hawk setup tutorial. If you have not, please set up the sensor and then restart this quickstart from the beginning.
Continuing inside the Docker container, install the following dependencies:
sudo apt-get install -y ros-humble-isaac-ros-examples ros-humble-isaac-ros-argus-camera
Run the following launch file to spin up a demo of this package using a Hawk camera:
ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=argus_mono,rectify_mono,yolov8 \ model_file_path:=${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8/yolov8s.onnx engine_file_path:=${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8/yolov8s.plan
Visualize Results
Open a new terminal inside the Docker container:
cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Run the YOLOv8 visualization script:
ros2 run isaac_ros_yolov8 isaac_ros_yolov8_visualizer.py
Open another terminal inside the Docker container:
cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Visualize and validate the output of the package with
rqt_image_view
:ros2 run rqt_image_view rqt_image_view /yolov8_processed_image
Your output should look like this:
Troubleshooting
Isaac ROS Troubleshooting
For solutions to problems with Isaac ROS, please check here.
Deep Learning Troubleshooting
For solutions to problems with using DNN models, please check here.
API
Usage
ros2 launch isaac_ros_yolov8 isaac_ros_yolov8_visualize.launch.py model_file_path:=<model_file_path> engine_file_path:=<engine_file_path> input_binding_names:=<input_binding_names> output_binding_names:=<output_binding_names> network_image_width:=<network_image_width> network_image_height:=<network_image_height> force_engine_update:=<force_engine_update> image_mean:=<image_mean> image_stddev:=<image_stddev> confidence_threshold:=<confidence_threshold> nms_threshold:=<nms_threshold>
Yolov8DecoderNode
ROS Parameters
ROS Parameter |
Type |
Default |
Description |
---|---|---|---|
|
|
|
Name of the inferred output tensor published by the Managed NITROS Publisher. The decoder uses this name to get the output tensor. |
|
|
|
Detection confidence threshold. Used to filter candidate detections during Non-Maximum Suppression (NMS). |
|
|
|
NMS IOU threshold. |
ROS Topics Subscribed
ROS Topic |
Interface |
Description |
---|---|---|
|
Tensor list from the managed NITROS subscriber that represents the inferred aligned bounding boxes. |
ROS Topics Published
ROS Topic |
Interface |
Description |
---|---|---|
|
Aligned image bounding boxes with detection class. |