isaac_ros_bi3d_freespace

Source code on GitHub.

Quickstart

Set Up Development Environment

  1. Set up your development environment by following the instructions in getting started.

  2. Clone isaac_ros_common under ${ISAAC_ROS_WS}/src.

    cd ${ISAAC_ROS_WS}/src && \
       git clone -b release-3.2 https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_common.git isaac_ros_common
    
  3. (Optional) Install dependencies for any sensors you want to use by following the sensor-specific guides.

    Note

    We strongly recommend installing all sensor dependencies before starting any quickstarts. Some sensor dependencies require restarting the Isaac ROS Dev container during installation, which will interrupt the quickstart process.

Download Quickstart Assets

  1. Download quickstart data from NGC:

    Make sure required libraries are installed.

    sudo apt-get install -y curl jq tar
    

    Then, run these commands to download the asset from NGC:

    NGC_ORG="nvidia"
    NGC_TEAM="isaac"
    PACKAGE_NAME="isaac_ros_bi3d_freespace"
    NGC_RESOURCE="isaac_ros_bi3d_freespace_assets"
    NGC_FILENAME="quickstart.tar.gz"
    MAJOR_VERSION=3
    MINOR_VERSION=2
    VERSION_REQ_URL="https://catalog.ngc.nvidia.com/api/resources/versions?orgName=$NGC_ORG&teamName=$NGC_TEAM&name=$NGC_RESOURCE&isPublic=true&pageNumber=0&pageSize=100&sortOrder=CREATED_DATE_DESC"
    AVAILABLE_VERSIONS=$(curl -s \
        -H "Accept: application/json" "$VERSION_REQ_URL")
    LATEST_VERSION_ID=$(echo $AVAILABLE_VERSIONS | jq -r "
        .recipeVersions[]
        | .versionId as \$v
        | \$v | select(test(\"^\\\\d+\\\\.\\\\d+\\\\.\\\\d+$\"))
        | split(\".\") | {major: .[0]|tonumber, minor: .[1]|tonumber, patch: .[2]|tonumber}
        | select(.major == $MAJOR_VERSION and .minor <= $MINOR_VERSION)
        | \$v
        " | sort -V | tail -n 1
    )
    if [ -z "$LATEST_VERSION_ID" ]; then
        echo "No corresponding version found for Isaac ROS $MAJOR_VERSION.$MINOR_VERSION"
        echo "Found versions:"
        echo $AVAILABLE_VERSIONS | jq -r '.recipeVersions[].versionId'
    else
        mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets && \
        FILE_REQ_URL="https://api.ngc.nvidia.com/v2/resources/$NGC_ORG/$NGC_TEAM/$NGC_RESOURCE/\
    versions/$LATEST_VERSION_ID/files/$NGC_FILENAME" && \
        curl -LO --request GET "${FILE_REQ_URL}" && \
        tar -xf ${NGC_FILENAME} -C ${ISAAC_ROS_WS}/isaac_ros_assets && \
        rm ${NGC_FILENAME}
    fi
    
  2. Download a pre-trained Bi3D model:

    mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets/models/bi3d_proximity_segmentation && \
    cd ${ISAAC_ROS_WS}/isaac_ros_assets/models/bi3d_proximity_segmentation && \
    wget 'https://api.ngc.nvidia.com/v2/models/nvidia/isaac/bi3d_proximity_segmentation/versions/2.0.0/files/featnet.onnx' &&
    wget 'https://api.ngc.nvidia.com/v2/models/nvidia/isaac/bi3d_proximity_segmentation/versions/2.0.0/files/segnet.onnx'
    

Build isaac_ros_bi3d_freespace

  1. Launch the Docker container using the run_dev.sh script:

    cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \
    ./scripts/run_dev.sh
    
  2. Install the prebuilt Debian package:

    sudo apt-get update
    
    sudo apt-get install -y ros-humble-isaac-ros-bi3d-freespace
    

Run Launch File

  1. Convert the .onnx model files to TensorRT engine plan files:

    /usr/src/tensorrt/bin/trtexec --saveEngine=${ISAAC_ROS_WS}/isaac_ros_assets/models/bi3d_proximity_segmentation/featnet.plan \
    --onnx=${ISAAC_ROS_WS}/isaac_ros_assets/models/bi3d_proximity_segmentation/featnet.onnx --int8 &&
    /usr/src/tensorrt/bin/trtexec --saveEngine=${ISAAC_ROS_WS}/isaac_ros_assets/models/bi3d_proximity_segmentation/segnet.plan \
    --onnx=${ISAAC_ROS_WS}/isaac_ros_assets/models/bi3d_proximity_segmentation/segnet.onnx --int8
    

    Note

    The engine plans generated using the x86_64 commands will also work on Jetson, but performance will be reduced.

  1. Continuing inside the Docker container, install the following dependencies:

    sudo apt-get update
    
    sudo apt-get install -y ros-humble-isaac-ros-examples ros-humble-isaac-ros-bi3d
    
  2. Run the following launch file to spin up a demo of this package using the quickstart rosbag:

    ros2 launch isaac_ros_examples isaac_ros_examples.launch.py \
    launch_fragments:=bi3d,bi3d_freespace \
    interface_specs_file:=${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_bi3d_freespace/rosbag_quickstart_interface_specs.json \
    featnet_engine_file_path:=${ISAAC_ROS_WS}/isaac_ros_assets/models/bi3d_proximity_segmentation/featnet.plan \
    segnet_engine_file_path:=${ISAAC_ROS_WS}/isaac_ros_assets/models/bi3d_proximity_segmentation/segnet.plan \
    max_disparity_values:=10
    
  3. Open a second terminal inside the Docker container:

    cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \
    ./scripts/run_dev.sh
    
  4. Run the rosbag file to simulate image streams:

    ros2 bag play -l ${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_bi3d_freespace/quickstart.bag
    

Visualize Results

  1. Open a new terminal inside the Docker container:

    cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \
       ./scripts/run_dev.sh
    
  2. Visualize the occupancy grid in RViz.

    Start RViz:

    rviz2
    

    In the left pane, change Fixed Frame to base_link.

    In the left pane, click the Add button, then select By topic followed by Map to add the occupancy grid.

    RViz Output

Try More Examples

To continue your exploration, check out the following suggested examples:

API

Usage

ros2 launch isaac_ros_bi3d_freespace isaac_ros_freespace_segmentation.launch.py base_link_frame:=<"name of base link"> camera_frame:=<"name of camera frame"> f_x:=<"focal length in pixels in x dimension"> f_y:=<"focal length in pixels in y dimension"> grid_width:=<"desired grid width"> grid_height:=<"desired grid height"> grid_resolution:=<"desired grid resolution">

ROS Parameters

ROS Parameter

Type

Default

Description

base_link_frame

std::string

base_link

The name of the tf2 frame attached to the robot base

camera_frame

std::string

camera

The name of the tf2 frame attached to the camera

f_x

double

0.0

The focal length in pixels in x dimension

f_y

double

0.0

The focal length in pixels in y dimension

grid_width

int

100

The width of the output occupancy grid, in number of cells

grid_height

int

100

The height of the output occupancy grid, in number of cells

grid_resolution

double

0.01

The resolution of the output occupancy grid, in meters per cell

ROS Topics Subscribed

ROS Topic

Interface

Description

freespace_segmentation/mask_in

stereo_msgs/DisparityImage

The input disparity image, with pixels corresponding to ground labeled as 0

Warning

Limitation: For all input images, both the height and width must be an even number of pixels.

ROS Topics Published

ROS Topic

Interface

Description

freespace_segmentation/occupancy_grid

nav_msgs/OccupancyGrid

The output occupancy grid, with cells marked as 0 if free