isaac_ros_stereo_image_proc
Source code on GitHub.
Quickstart
Set Up Development Environment
Set up your development environment by following the instructions in getting started.
Clone
isaac_ros_common
under${ISAAC_ROS_WS}/src
.cd ${ISAAC_ROS_WS}/src && \ git clone -b release-3.1 https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_common.git isaac_ros_common
(Optional) Install dependencies for any sensors you want to use by following the sensor-specific guides.
Warning
We strongly recommend installing all sensor dependencies before starting any quickstarts. Some sensor dependencies require restarting the Isaac ROS Dev container during installation, which will interrupt the quickstart process.
Download Quickstart Assets
Download quickstart data from NGC:
Make sure required libraries are installed.
sudo apt-get install -y curl jq tar
Then, run these commands to download the asset from NGC:
NGC_ORG="nvidia" NGC_TEAM="isaac" PACKAGE_NAME="isaac_ros_stereo_image_proc" NGC_RESOURCE="isaac_ros_stereo_image_proc_assets" NGC_FILENAME="quickstart.tar.gz" MAJOR_VERSION=3 MINOR_VERSION=1 VERSION_REQ_URL="https://catalog.ngc.nvidia.com/api/resources/versions?orgName=$NGC_ORG&teamName=$NGC_TEAM&name=$NGC_RESOURCE&isPublic=true&pageNumber=0&pageSize=100&sortOrder=CREATED_DATE_DESC" AVAILABLE_VERSIONS=$(curl -s \ -H "Accept: application/json" "$VERSION_REQ_URL") LATEST_VERSION_ID=$(echo $AVAILABLE_VERSIONS | jq -r " .recipeVersions[] | .versionId as \$v | \$v | select(test(\"^\\\\d+\\\\.\\\\d+\\\\.\\\\d+$\")) | split(\".\") | {major: .[0]|tonumber, minor: .[1]|tonumber, patch: .[2]|tonumber} | select(.major == $MAJOR_VERSION and .minor <= $MINOR_VERSION) | \$v " | sort -V | tail -n 1 ) if [ -z "$LATEST_VERSION_ID" ]; then echo "No corresponding version found for Isaac ROS $MAJOR_VERSION.$MINOR_VERSION" echo "Found versions:" echo $AVAILABLE_VERSIONS | jq -r '.recipeVersions[].versionId' else mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets && \ FILE_REQ_URL="https://api.ngc.nvidia.com/v2/resources/$NGC_ORG/$NGC_TEAM/$NGC_RESOURCE/\ versions/$LATEST_VERSION_ID/files/$NGC_FILENAME" && \ curl -LO --request GET "${FILE_REQ_URL}" && \ tar -xf ${NGC_FILENAME} -C ${ISAAC_ROS_WS}/isaac_ros_assets && \ rm ${NGC_FILENAME} fi
Build isaac_ros_stereo_image_proc
Launch the Docker container using the
run_dev.sh
script:cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Install the prebuilt Debian package:
sudo apt-get install -y ros-humble-isaac-ros-image-proc ros-humble-isaac-ros-stereo-image-proc
Clone this repository under
${ISAAC_ROS_WS}/src
:cd ${ISAAC_ROS_WS}/src && \ git clone -b release-3.1 https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_image_pipeline.git isaac_ros_image_pipeline
Launch the Docker container using the
run_dev.sh
script:cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Use
rosdep
to install the package’s dependencies:rosdep install --from-paths ${ISAAC_ROS_WS}/src/isaac_ros_image_pipeline/isaac_ros_stereo_image_proc --ignore-src -y
Build the package from source:
cd ${ISAAC_ROS_WS}/ && \ colcon build --symlink-install --packages-up-to isaac_ros_stereo_image_proc
Source the ROS workspace:
Note
Make sure to repeat this step in every terminal created inside the Docker container.
Because this package was built from source, the enclosing workspace must be sourced for ROS to be able to find the package’s contents.
source install/setup.bash
Run Launch File
Ensure that you have already set up your RealSense camera using the RealSense setup tutorial. If you have not, please set up the sensor and then restart this quickstart from the beginning.
Continuing inside the container, install the following dependencies:
sudo apt-get install -y ros-humble-isaac-ros-examples ros-humble-isaac-ros-realsense ros-humble-isaac-ros-depth-image-proc ros-humble-isaac-ros-image-proc
Run the launch file, which launches the example, and wait for 10 seconds.
ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=realsense_stereo_rect,disparity,disparity_to_depth,point_cloud_xyz
Observe point cloud output
/points
on a separate terminal with the command:ros2 topic echo /points
Ensure that you have already set up your Hawk camera using the Hawk setup tutorial. If you have not, please set up the sensor and then restart this quickstart from the beginning.
Continuing inside the container, install the following dependencies:
sudo apt-get install -y ros-humble-isaac-ros-examples ros-humble-isaac-ros-argus-camera ros-humble-isaac-ros-depth-image-proc ros-humble-isaac-ros-image-proc
Run the launch file, which launches the example, and wait for 10 seconds.
ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=argus_stereo,rectify_stereo,disparity,disparity_to_depth,point_cloud_xyz
Observe point cloud output
/points
on a separate terminal with the command:ros2 topic echo /points
Ensure that you have already set up your ZED camera using ZED setup tutorial.
Continuing inside the Docker container, install dependencies:
sudo apt-get install -y ros-humble-isaac-ros-examples ros-humble-isaac-ros-depth-image-proc ros-humble-isaac-ros-image-proc ros-humble-isaac-ros-zed
Run the following launch file to spin up a demo of this package using a ZED Camera:
ros2 launch isaac_ros_examples isaac_ros_examples.launch.py \ launch_fragments:=zed_stereo_rect,disparity,disparity_to_depth,point_cloud_xyz \ interface_specs_file:=${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_stereo_image_proc/zed2_quickstart_interface_specs.json
Note
If you are using the ZED X series, replace zed2_quickstart_interface_specs.json with zedx_quickstart_interface_specs.json in the above command.
Observe point cloud output
/points
on a separate terminal with the command:ros2 topic echo /points
Try More Examples
To continue your exploration, check out the following suggested examples:
API
Overview
The isaac_ros_stereo_image_proc
package offers functionality for
handling image pairs from a binocular/stereo camera setup, calculating
the disparity between the two images, and producing a point cloud with
depth information. It largely replaces the stereo_image_proc
package.
Available Components
Component |
Topics Subscribed |
Topics Published |
Parameters |
---|---|---|---|
|
|
|
|
|
|
|
|
|
|
|
N/A |
Note
DisparityNode
with the ORIN
backend requires a max_disparity
value of 128 or 256, but the default value is 64. Besides, the ORIN
backend requires nv12
input image format, you can use the ImageFormatConverterNode
to convert the input to nv12
format.