isaac_ros_segformer
Source code on GitHub.
Quickstart
Set Up Development Environment
Set up your development environment by following the instructions in getting started.
Clone
isaac_ros_common
under${ISAAC_ROS_WS}/src
.cd ${ISAAC_ROS_WS}/src && \ git clone -b release-3.1 https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_common.git isaac_ros_common
(Optional) Install dependencies for any sensors you want to use by following the sensor-specific guides.
Warning
We strongly recommend installing all sensor dependencies before starting any quickstarts. Some sensor dependencies require restarting the Isaac ROS Dev container during installation, which will interrupt the quickstart process.
Download Quickstart Assets
Download quickstart data from NGC:
Make sure required libraries are installed.
sudo apt-get install -y curl jq tar
Then, run these commands to download the asset from NGC:
NGC_ORG="nvidia" NGC_TEAM="isaac" PACKAGE_NAME="isaac_ros_segformer" NGC_RESOURCE="isaac_ros_segformer_assets" NGC_FILENAME="quickstart.tar.gz" MAJOR_VERSION=3 MINOR_VERSION=1 VERSION_REQ_URL="https://catalog.ngc.nvidia.com/api/resources/versions?orgName=$NGC_ORG&teamName=$NGC_TEAM&name=$NGC_RESOURCE&isPublic=true&pageNumber=0&pageSize=100&sortOrder=CREATED_DATE_DESC" AVAILABLE_VERSIONS=$(curl -s \ -H "Accept: application/json" "$VERSION_REQ_URL") LATEST_VERSION_ID=$(echo $AVAILABLE_VERSIONS | jq -r " .recipeVersions[] | .versionId as \$v | \$v | select(test(\"^\\\\d+\\\\.\\\\d+\\\\.\\\\d+$\")) | split(\".\") | {major: .[0]|tonumber, minor: .[1]|tonumber, patch: .[2]|tonumber} | select(.major == $MAJOR_VERSION and .minor <= $MINOR_VERSION) | \$v " | sort -V | tail -n 1 ) if [ -z "$LATEST_VERSION_ID" ]; then echo "No corresponding version found for Isaac ROS $MAJOR_VERSION.$MINOR_VERSION" echo "Found versions:" echo $AVAILABLE_VERSIONS | jq -r '.recipeVersions[].versionId' else mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets && \ FILE_REQ_URL="https://api.ngc.nvidia.com/v2/resources/$NGC_ORG/$NGC_TEAM/$NGC_RESOURCE/\ versions/$LATEST_VERSION_ID/files/$NGC_FILENAME" && \ curl -LO --request GET "${FILE_REQ_URL}" && \ tar -xf ${NGC_FILENAME} -C ${ISAAC_ROS_WS}/isaac_ros_assets && \ rm ${NGC_FILENAME} fi
Build isaac_ros_segformer
Launch the Docker container using the
run_dev.sh
script:cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Install the prebuilt Debian package:
sudo apt-get install -y ros-humble-isaac-ros-segformer
Clone this repository under
${ISAAC_ROS_WS}/src
:cd ${ISAAC_ROS_WS}/src && \ git clone -b release-3.1 https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_image_segmentation.git isaac_ros_image_segmentation
Launch the Docker container using the
run_dev.sh
script:cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Use
rosdep
to install the package’s dependencies:rosdep install --from-paths ${ISAAC_ROS_WS}/src/isaac_ros_image_segmentation --ignore-src -y
Build the package from source:
cd ${ISAAC_ROS_WS} && \ colcon build --symlink-install --packages-up-to isaac_ros_segformer
Source the ROS workspace:
Note
Make sure to repeat this step in every terminal created inside the Docker container.
Since this package was built from source, the enclosing workspace must be sourced for ROS to be able to find the package’s contents.
source install/setup.bash
Prepare PeopleSemSegFormer Model
Open a new terminal and attach to the container.
cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Download the
PeopleSemSegFormer
ONNX file:mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets/models/peoplesemsegformer/1 && \ cd ${ISAAC_ROS_WS}/isaac_ros_assets/models/peoplesemsegformer/1 && \ wget --content-disposition 'https://api.ngc.nvidia.com/v2/models/org/nvidia/team/tao/peoplesemsegformer/deployable_v1.0/files?redirect=true&path=peoplesemsegformer.onnx' -O model.onnx
Convert the ONNX file to a TensorRT plan file:
/usr/src/tensorrt/bin/trtexec --onnx=${ISAAC_ROS_WS}/isaac_ros_assets/models/peoplesemsegformer/1/model.onnx --saveEngine=${ISAAC_ROS_WS}/isaac_ros_assets/models/peoplesemsegformer/1/model.plan
Note
The model conversion time varies across different platforms. On Jetson AGX Orin, the engine conversion process takes ~10-15 minutes to complete.
Create a file called
/tmp/models/peoplesemsegformer/config.pbtxt
by copying the sample config file:cp ${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_segformer/peoplesemsegformer_config.pbtxt ${ISAAC_ROS_WS}/isaac_ros_assets/models/peoplesemsegformer/config.pbtxt
Run Launch File
Continuing inside the Docker container, install the following dependencies:
sudo apt-get install -y ros-humble-isaac-ros-examples
Run the following launch file to spin up a demo of this package using the quickstart rosbag:
ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=segformer interface_specs_file:=${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_segformer/quickstart_interface_specs.json model_name:=peoplesemsegformer model_repository_paths:=[${ISAAC_ROS_WS}/isaac_ros_assets/models]
Open another terminal and play the ROS bag:
cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
ros2 bag play -l isaac_ros_assets/isaac_ros_segformer/segformer_sample_data
Ensure that you have already set up your RealSense camera using the RealSense setup tutorial. If you have not, please set up the sensor and then restart this quickstart from the beginning.
Continuing inside the Docker container, install the following dependencies:
sudo apt-get install -y ros-humble-isaac-ros-examples ros-humble-isaac-ros-realsense
Run the following launch file to spin up a demo of this package using a RealSense camera:
ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=realsense_mono_rect,segformer model_name:=peoplesemsegformer model_repository_paths:=[${ISAAC_ROS_WS}/isaac_ros_assets/models]
Ensure that you have already set up your Hawk camera using the Hawk setup tutorial. If you have not, please set up the sensor and then restart this quickstart from the beginning.
Continuing inside the Docker container, install the following dependencies:
sudo apt-get install -y ros-humble-isaac-ros-examples ros-humble-isaac-ros-argus-camera
Run the following launch file to spin up a demo of this package using a Hawk camera:
ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=argus_mono,rectify_mono,segformer model_name:=peoplesemsegformer model_repository_paths:=[${ISAAC_ROS_WS}/isaac_ros_assets/models]
Ensure that you have already set up your ZED camera using ZED setup tutorial.
Continuing inside the Docker container, install dependencies:
sudo apt-get install -y ros-humble-isaac-ros-examples ros-humble-isaac-ros-image-proc ros-humble-isaac-ros-zed
Run the following launch file to spin up a demo of this package using a ZED Camera:
ros2 launch isaac_ros_examples isaac_ros_examples.launch.py \ launch_fragments:=zed_mono_rect,segformer \ model_name:=peoplesemsegformer model_repository_paths:=[${ISAAC_ROS_WS}/isaac_ros_assets/models] \ interface_specs_file:=${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_segformer/zed2_quickstart_interface_specs.json
Note
If you are using the ZED X series, replace zed2_quickstart_interface_specs.json with zedx_quickstart_interface_specs.json in the above command.
Visualize Results
Open a new terminal inside the Docker container:
cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Visualize and validate the output of the package by launching
rqt_image_view
:ros2 run rqt_image_view rqt_image_view
Then inside the
rqt_image_view
GUI, change the topic to/segformer/colored_segmentation_mask
to view a colorized segmentation mask.Note
The raw segmentation mask is also published to
/segformer/raw_segmentation_mask
. However, the raw pixels correspond to the class labels and so the output is unsuitable for human visual inspection.
Try More Examples
To continue your exploration, check out the following suggested examples:
Troubleshooting
Isaac ROS Troubleshooting
For solutions to problems with Isaac ROS, please check here.
Deep Learning Troubleshooting
For solutions to problems with using DNN models, please check here.
API
Usage
Two launch files are provided to use this package. The first launch file launches isaac_ros_tensor_rt
, whereas another one uses isaac_ros_triton
, along with
the necessary components to perform encoding on images and decoding of Segformer
’s output. Please note, Segformer re-utilizes U-Net decoder for decoding the network output.
Warning
For your specific application, these launch files may need to be modified. Please consult the available components to see the configurable parameters.
Launch File |
Components Used |
---|---|
|
|
|
Note
Isaac ROS Segformer uses UNetDecoderNode for postprocessing and doesn’t have any nodes of its own. Refer Isaac ROS UNet Package for more details.