Tutorial to Run NITROS-Accelerated Graph with Argus Camera
graph LR;
argus_node("ArgusMonoNode (Raw Image)") --> rectify_node("RectifyNode (Rectified Image)");
rectify_node --> encoder_node("DnnImageEncoderNode (DNN Pre-Processed Tensors)");
encoder_node --> triton_node("TritonNode (DNN Inference)");
triton_node --> unet_decoder_node("UNetDecoderNode (Segmentation Image)");
If you have an Argus-compatible camera, you can also use the launch file provided in this package to start a fully NITROS-accelerated image segmentation graph.
To start the graph:
Follow the quickstart up to step 7.
Inside the container, install the
isaac_ros_argus_camera
package.sudo apt-get install -y ros-humble-isaac-ros-argus-camera
Run the following launch files to start the graph:
ros2 launch isaac_ros_unet isaac_ros_argus_unet_triton.launch.py model_name:=peoplesemsegnet_shuffleseg model_repository_paths:=['/tmp/models'] input_binding_names:=['input_2:0'] output_binding_names:=['argmax_1'] network_output_type:='argmax'
- In another terminal, visualize and validate the output of the package by launching
rqt_image_view
:
cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Then launch
rqt_image_view
:ros2 run rqt_image_view rqt_image_view
To view a colorized segmentation mask, inside the
rqt_image_view
GUI, change the topic to/unet/colored_segmentation_mask
.
- You can also view the raw segmentation, which is published to
/unet/raw_segmentation_mask
, where the raw pixels correspond to the class labels making it unsuitable for human visual inspection.