Attention

As of June 30, 2025, the Isaac ROS Buildfarm for Isaac ROS 2.1 on Ubuntu 20.04 Focal is no longer supported.

Due to an isolated infrastructure event, all ROS 2 Humble Debian packages that were previously built for Ubuntu 20.04 are no longer available in the Isaac Apt Repository. All artifacts for Isaac ROS 3.0 and later are built and maintained with a more robust pipeline.

Users are encouraged to migrate to the latest version of Isaac ROS. The source code for Isaac ROS 2.1 continues to be available on the release-2.1 branches of the Isaac ROS GitHub repositories.

The original documentation for Isaac ROS 2.1 is preserved below.

DOPE

DOPE (Deep Object Pose Estimation) requires a pre-trained model. Input images may need to be cropped and resized to maintain the aspect ratio and match the input resolution of DOPE. After DOPE has produced an estimate, the DNN decoder will use the specified object type to transform using belief maps to output object poses.

NVLabs has provided a DOPE pre-trained model using the HOPE dataset. HOPE stands for Household Objects for Pose Estimation. HOPE is a research-oriented dataset using toy grocery objects and 3D textured meshes of the objects for training on synthetic data. To use DOPE for other objects that are relevant to your application, it needs to be trained with another dataset targeting these objects. For example, DOPE has been trained to detect dollies for use with a mobile robot that navigates under, lifts, and moves that type of dolly.

Repositories and Packages

The Isaac ROS implementations of this technology are available here: