isaac_ros_yolov8#

Source code available on GitHub.

Quickstart#

Set Up Development Environment#

  1. Set up your development environment by following the instructions in getting started.

  2. (Optional) Install dependencies for any sensors you want to use by following the sensor-specific guides.

    Note

    We strongly recommend installing all sensor dependencies before starting any quickstarts. Some sensor dependencies require restarting the development environment during installation, which will interrupt the quickstart process.

Download Quickstart Assets#

  1. Download quickstart data from NGC:

    Make sure required libraries are installed.

    sudo apt-get install -y curl jq tar
    

    Then, run these commands to download the asset from NGC:

    NGC_ORG="nvidia"
    NGC_TEAM="isaac"
    PACKAGE_NAME="isaac_ros_yolov8"
    NGC_RESOURCE="isaac_ros_yolov8_assets"
    NGC_FILENAME="quickstart.tar.gz"
    MAJOR_VERSION=4
    MINOR_VERSION=0
    VERSION_REQ_URL="https://catalog.ngc.nvidia.com/api/resources/versions?orgName=$NGC_ORG&teamName=$NGC_TEAM&name=$NGC_RESOURCE&isPublic=true&pageNumber=0&pageSize=100&sortOrder=CREATED_DATE_DESC"
    AVAILABLE_VERSIONS=$(curl -s \
        -H "Accept: application/json" "$VERSION_REQ_URL")
    LATEST_VERSION_ID=$(echo $AVAILABLE_VERSIONS | jq -r "
        .recipeVersions[]
        | .versionId as \$v
        | \$v | select(test(\"^\\\\d+\\\\.\\\\d+\\\\.\\\\d+$\"))
        | split(\".\") | {major: .[0]|tonumber, minor: .[1]|tonumber, patch: .[2]|tonumber}
        | select(.major == $MAJOR_VERSION and .minor <= $MINOR_VERSION)
        | \$v
        " | sort -V | tail -n 1
    )
    if [ -z "$LATEST_VERSION_ID" ]; then
        echo "No corresponding version found for Isaac ROS $MAJOR_VERSION.$MINOR_VERSION"
        echo "Found versions:"
        echo $AVAILABLE_VERSIONS | jq -r '.recipeVersions[].versionId'
    else
        mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets && \
        FILE_REQ_URL="https://api.ngc.nvidia.com/v2/resources/$NGC_ORG/$NGC_TEAM/$NGC_RESOURCE/\
    versions/$LATEST_VERSION_ID/files/$NGC_FILENAME" && \
        curl -LO --request GET "${FILE_REQ_URL}" && \
        tar -xf ${NGC_FILENAME} -C ${ISAAC_ROS_WS}/isaac_ros_assets && \
        rm ${NGC_FILENAME}
    fi
    
  2. Download the model of your choice from Ultralytics YOLOv8. For this example, we use YOLOv8s.

    cd Downloads && \
       wget https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt
    
  3. Convert the PyTorch model (.pt) to a general ONNX model (.onnx). Export to ONNX following instructions given below or here. Then, convert the ONNX model to a TensorRT engine file (.plan) using trtexec. Arguments can be specified for FP16 quantization during this step. You may use either model for inference. You can use netron to visualize the ONNX model and note input and output names and dimensions.

    This can be done by first installing ultralytics and onnx via pip:

    pip3 install --break-system-packages ultralytics
    pip3 install --break-system-packages onnx
    

    Afterwards, convert the model from a .pt file to a .onnx model using ultralytics. This can be done by running:

    python3
    

    Then within python3, export the model to .onnx format:

    >> from ultralytics import YOLO
    >> model = YOLO('yolov8s.pt')
    >> model.export(format='onnx')
    

    Exit the interactive python shell, now convert the ONNX model to a TensorRT engine file using trtexec.

    /usr/src/tensorrt/bin/trtexec --onnx=yolov8s.onnx --saveEngine=yolov8s.plan
    

    Copy the generated .onnx and .plan model into the designated location for Isaac ROS (${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8):

    mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8
    cp yolov8s.onnx ${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8
    cp yolov8s.plan ${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8
    

Build isaac_ros_yolov8#

  1. Activate the Isaac ROS environment:

    isaac-ros activate
    
  2. Install the prebuilt Debian package:

    sudo apt-get update
    
    sudo apt-get install -y ros-jazzy-isaac-ros-yolov8 ros-jazzy-isaac-ros-dnn-image-encoder ros-jazzy-isaac-ros-tensor-rt
    

Run Launch File#

  1. Continuing inside the Isaac ROS environment, install the following dependencies:

    sudo apt-get update
    
    sudo apt-get install -y ros-jazzy-isaac-ros-examples
    
  2. Run the following launch file to spin up a demo of this package using the quickstart rosbag:

    cd /workspaces/isaac_ros-dev && \
    ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=yolov8 interface_specs_file:=${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_yolov8/quickstart_interface_specs.json \
       engine_file_path:=${ISAAC_ROS_WS}/isaac_ros_assets/models/yolov8/yolov8s.plan
    
  3. Open a second terminal inside the Isaac ROS environment:

    isaac-ros activate
    
  4. Run the rosbag file to simulate an image stream:

    ros2 bag play -l ${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_yolov8/quickstart.bag
    

Visualize Results#

  1. Open a new terminal inside the Isaac ROS environment:

    isaac-ros activate
    
  2. Run the YOLOv8 visualization script:

    ros2 run isaac_ros_yolov8 isaac_ros_yolov8_visualizer.py
    
  3. Open another terminal inside the Isaac ROS environment:

    isaac-ros activate
    
  4. Visualize and validate the output of the package with rqt_image_view:

    ros2 run rqt_image_view rqt_image_view /yolov8_processed_image
    

    Your output should look like this:

    RQT showing detection of people cycling and bikes

Troubleshooting#

Isaac ROS Troubleshooting#

For solutions to problems with Isaac ROS, please check here.

Deep Learning Troubleshooting#

For solutions to problems with using DNN models, please check here.

API#

Usage#

ros2 launch isaac_ros_yolov8 isaac_ros_yolov8_visualize.launch.py model_file_path:=<model_file_path> engine_file_path:=<engine_file_path> input_binding_names:=<input_binding_names> output_binding_names:=<output_binding_names> network_image_width:=<network_image_width> network_image_height:=<network_image_height> force_engine_update:=<force_engine_update> image_mean:=<image_mean> image_stddev:=<image_stddev> confidence_threshold:=<confidence_threshold> nms_threshold:=<nms_threshold>

Yolov8DecoderNode#

ROS Parameters#

ROS Parameter

Type

Default

Description

tensor_name

string

"output_tensor"

Name of the inferred output tensor published by the Managed NITROS Publisher. The decoder uses this name to get the output tensor.

confidence_threshold

float

0.25

Detection confidence threshold. Used to filter candidate detections during Non-Maximum Suppression (NMS).

nms_threshold

float

0.45

NMS IOU threshold.

ROS Topics Subscribed#

ROS Topic

Interface

Description

tensor_sub

isaac_ros_tensor_list_interfaces/TensorList

Tensor list from the managed NITROS subscriber that represents the inferred aligned bounding boxes.

ROS Topics Published#

ROS Topic

Interface

Description

detections_output

vision_msgs/Detection2DArray

Aligned image bounding boxes with detection class.