isaac_ros_rtdetr#

Source code available on GitHub.

https://media.githubusercontent.com/media/NVIDIA-ISAAC-ROS/.github/release-4.0/resources/isaac_ros_docs/repositories_and_packages/isaac_ros_object_detection/isaac_ros_rtdetr/syntheticadetr_1.0_grasp_objects.gif/

Stable object detections using SyntheticaDETR in a difficult scene with camera motion blur, round objects with few features, reflective object material, and light reflections#

Quickstart#

Set Up Development Environment#

  1. Set up your development environment by following the instructions in getting started.

  2. (Optional) Install dependencies for any sensors you want to use by following the sensor-specific guides.

    Note

    We strongly recommend installing all sensor dependencies before starting any quickstarts. Some sensor dependencies require restarting the development environment during installation, which will interrupt the quickstart process.

Download Quickstart Assets#

  1. Download quickstart data from NGC:

    Make sure required libraries are installed.

    sudo apt-get install -y curl jq tar
    

    Then, run these commands to download the asset from NGC:

    NGC_ORG="nvidia"
    NGC_TEAM="isaac"
    PACKAGE_NAME="isaac_ros_rtdetr"
    NGC_RESOURCE="isaac_ros_rtdetr_assets"
    NGC_FILENAME="quickstart.tar.gz"
    MAJOR_VERSION=4
    MINOR_VERSION=0
    VERSION_REQ_URL="https://catalog.ngc.nvidia.com/api/resources/versions?orgName=$NGC_ORG&teamName=$NGC_TEAM&name=$NGC_RESOURCE&isPublic=true&pageNumber=0&pageSize=100&sortOrder=CREATED_DATE_DESC"
    AVAILABLE_VERSIONS=$(curl -s \
        -H "Accept: application/json" "$VERSION_REQ_URL")
    LATEST_VERSION_ID=$(echo $AVAILABLE_VERSIONS | jq -r "
        .recipeVersions[]
        | .versionId as \$v
        | \$v | select(test(\"^\\\\d+\\\\.\\\\d+\\\\.\\\\d+$\"))
        | split(\".\") | {major: .[0]|tonumber, minor: .[1]|tonumber, patch: .[2]|tonumber}
        | select(.major == $MAJOR_VERSION and .minor <= $MINOR_VERSION)
        | \$v
        " | sort -V | tail -n 1
    )
    if [ -z "$LATEST_VERSION_ID" ]; then
        echo "No corresponding version found for Isaac ROS $MAJOR_VERSION.$MINOR_VERSION"
        echo "Found versions:"
        echo $AVAILABLE_VERSIONS | jq -r '.recipeVersions[].versionId'
    else
        mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets && \
        FILE_REQ_URL="https://api.ngc.nvidia.com/v2/resources/$NGC_ORG/$NGC_TEAM/$NGC_RESOURCE/\
    versions/$LATEST_VERSION_ID/files/$NGC_FILENAME" && \
        curl -LO --request GET "${FILE_REQ_URL}" && \
        tar -xf ${NGC_FILENAME} -C ${ISAAC_ROS_WS}/isaac_ros_assets && \
        rm ${NGC_FILENAME}
    fi
    

Build isaac_ros_rtdetr#

  1. Activate the Isaac ROS environment:

    isaac-ros activate
    
  2. Install the prebuilt Debian package:

    sudo apt-get update
    
    sudo apt-get install -y ros-jazzy-isaac-ros-rtdetr && \
       sudo apt-get install -y ros-jazzy-isaac-ros-rtdetr-models-install
    
  3. Download and set up (convert ONNX to TensorRT engine plan) the pre-trained SyntheticaDETR model:

    sudo apt-get update
    
    ros2 run isaac_ros_rtdetr_models_install install_rtdetr_models.sh --eula
    

    Note

    This quickstart uses the NVIDIA-produced sdetr_grasp SyntheticaDETR model, but Isaac ROS RT-DETR is compatible with all RT-DETR architecture models. For more about the differences between SyntheticaDETR and RT-DETR, see here.

    Note

    The time taken to convert the ONNX model to a TensorRT engine plan varies across different platforms. On Jetson AGX Thor, for example, the engine conversion process can take up to 10-15 minutes to complete.

Run Launch File#

  1. Continuing inside the Isaac ROS environment, install the following dependencies:

    sudo apt-get update
    
    sudo apt-get install -y ros-jazzy-isaac-ros-examples
    
  2. Run the following launch file to spin up a demo of this package using the quickstart rosbag:

    ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=rtdetr interface_specs_file:=${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_rtdetr/quickstart_interface_specs.json engine_file_path:=${ISAAC_ROS_WS}/isaac_ros_assets/models/synthetica_detr/sdetr_grasp.plan
    
  3. Open a second terminal inside the Isaac ROS environment:

    isaac-ros activate
    
  4. Run the rosbag file to simulate an image stream:

    ros2 bag play -l ${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_rtdetr/quickstart.bag
    

Visualize Results#

  1. Open a new terminal inside the Isaac ROS environment:

    isaac-ros activate
    
  2. Run the RT-DETR visualization script:

    ros2 run isaac_ros_rtdetr isaac_ros_rtdetr_visualizer.py
    
  3. Open another terminal inside the Isaac ROS environment:

    isaac-ros activate
    
  4. Visualize and validate the output of the package with rqt_image_view:

    ros2 run rqt_image_view rqt_image_view /rtdetr_processed_image
    

    After about 1 minute, your output should look like this:

    RQT showing detection of grocery objects

Try More Examples#

To continue your exploration, check out the following suggested examples:

This package only supports models based on the RT-DETR architecture. Some of the supported RT-DETR models from NGC:

Model Name

Use Case

sdetr_grasp

Model trained on 100% synthetic data for object classes that can be grasped by a standard robot arm

sdetr_amr

Model trained on 100% synthetic data for object classes that are relevant to the operation of an Autonomous Mobile Robot

To learn how to use these models, click here.

Troubleshooting#

Isaac ROS Troubleshooting#

For solutions to problems with Isaac ROS, see troubleshooting.

Deep Learning Troubleshooting#

For solutions to problems with using DNN models, see troubleshooting deeplearning.

API#

Usage#

ros2 launch isaac_ros_rtdetr isaac_ros_rtdetr.launch.py model_file_path:=<path to .onnx> engine_file_path:=<path to .plan> input_tensor_names:=<input tensor names> input_binding_names:=<input binding names> output_tensor_names:=<output tensor names> output_binding_names:=<output binding names> verbose:=<TensorRT verbosity> force_engine_update:=<force TensorRT update>

RtDetrPreprocessorNode#

ROS Parameters#

ROS Parameter

Type

Default

Description

input_image_tensor_name

string

input_tensor

The name of the encoded image tensor binding in the input tensor list.

output_image_tensor_name

string

images

The name of the encoded image tensor binding in the output tensor list.

output_size_tensor_name

string

orig_target_sizes

The name of the target image size tensor binding in the output tensor list.

image_height

int

480

The height of the original image, for resizing the final bounding box to match the original dimensions.

image_width

int

640

The width of the original image, for resizing the final bounding box to match the original dimensions.

ROS Topics Subscribed#

ROS Topic

Interface

Description

encoded_tensor

isaac_ros_tensor_list_interfaces/TensorList

The tensor that contains the encoded image data.

ROS Topics Published#

ROS Topic

Interface

Description

tensor_pub

isaac_ros_tensor_list_interfaces/TensorList

Tensor list containing encoded image data and image size tensors.

RtDetrDecoderNode#

ROS Parameters#

ROS Parameter

Type

Default

Description

labels_tensor_name

string

labels

The name of the labels tensor binding in the input tensor list.

boxes_tensor_name

string

boxes

The name of the boxes tensor binding in the input tensor list.

scores_tensor_name

string

scores

The name of the scores tensor binding in the input tensor list.

confidence_threshold

double

0.9

The minimum score required for a particular bounding box to be published.

ROS Topics Subscribed#

ROS Topic

Interface

Description

tensor_sub

isaac_ros_tensor_list_interfaces/TensorList

The tensor that represents the inferred aligned bounding boxes, labels, and scores.

ROS Topics Published#

ROS Topic

Interface

Description

detections_output

vision_msgs/Detection2DArray

Aligned image bounding boxes with detection class