isaac_ros_centerpose
Source code on GitHub.
Quickstart
Set Up Development Environment
Set up your development environment by following the instructions in getting started.
Clone
isaac_ros_common
under${ISAAC_ROS_WS}/src
.cd ${ISAAC_ROS_WS}/src && \ git clone -b release-3.2 https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_common.git isaac_ros_common
(Optional) Install dependencies for any sensors you want to use by following the sensor-specific guides.
Note
We strongly recommend installing all sensor dependencies before starting any quickstarts. Some sensor dependencies require restarting the Isaac ROS Dev container during installation, which will interrupt the quickstart process.
Download Quickstart Assets
Download quickstart data from NGC:
Make sure required libraries are installed.
sudo apt-get install -y curl jq tar
Then, run these commands to download the asset from NGC:
NGC_ORG="nvidia" NGC_TEAM="isaac" PACKAGE_NAME="isaac_ros_centerpose" NGC_RESOURCE="isaac_ros_centerpose_assets" NGC_FILENAME="quickstart.tar.gz" MAJOR_VERSION=3 MINOR_VERSION=2 VERSION_REQ_URL="https://catalog.ngc.nvidia.com/api/resources/versions?orgName=$NGC_ORG&teamName=$NGC_TEAM&name=$NGC_RESOURCE&isPublic=true&pageNumber=0&pageSize=100&sortOrder=CREATED_DATE_DESC" AVAILABLE_VERSIONS=$(curl -s \ -H "Accept: application/json" "$VERSION_REQ_URL") LATEST_VERSION_ID=$(echo $AVAILABLE_VERSIONS | jq -r " .recipeVersions[] | .versionId as \$v | \$v | select(test(\"^\\\\d+\\\\.\\\\d+\\\\.\\\\d+$\")) | split(\".\") | {major: .[0]|tonumber, minor: .[1]|tonumber, patch: .[2]|tonumber} | select(.major == $MAJOR_VERSION and .minor <= $MINOR_VERSION) | \$v " | sort -V | tail -n 1 ) if [ -z "$LATEST_VERSION_ID" ]; then echo "No corresponding version found for Isaac ROS $MAJOR_VERSION.$MINOR_VERSION" echo "Found versions:" echo $AVAILABLE_VERSIONS | jq -r '.recipeVersions[].versionId' else mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets && \ FILE_REQ_URL="https://api.ngc.nvidia.com/v2/resources/$NGC_ORG/$NGC_TEAM/$NGC_RESOURCE/\ versions/$LATEST_VERSION_ID/files/$NGC_FILENAME" && \ curl -LO --request GET "${FILE_REQ_URL}" && \ tar -xf ${NGC_FILENAME} -C ${ISAAC_ROS_WS}/isaac_ros_assets && \ rm ${NGC_FILENAME} fi
Download the
CenterPose
shoe ONNX file to the models repository directory with version1
:
mkdir -p ${ISAAC_ROS_WS}/isaac_ros_assets/models/centerpose_shoe/1 && \ cd ${ISAAC_ROS_WS}/isaac_ros_assets/models/centerpose_shoe/1 && \ wget --content-disposition 'https://api.ngc.nvidia.com/v2/models/org/nvidia/team/tao/centerpose/deployable_dla34/files?redirect=true&path=shoe_DLA34.onnx' -O model.onnx
Move the quickstart model configuration file to the model repository.
cp ${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_centerpose/config.pbtxt ${ISAAC_ROS_WS}/isaac_ros_assets/models/centerpose_shoe/config.pbtxt
Warning
The name within the configuration file must match the model repository name. Please look at the quickstart configuration file and modify it the goal is to run another model.
Build isaac_ros_centerpose
Launch the Docker container using the
run_dev.sh
script:cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Install the prebuilt Debian package:
sudo apt-get update
sudo apt-get install -y ros-humble-isaac-ros-centerpose
Clone this repository under
${ISAAC_ROS_WS}/src
:cd ${ISAAC_ROS_WS}/src && \ git clone -b release-3.2 https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_pose_estimation.git isaac_ros_pose_estimation
Launch the Docker container using the
run_dev.sh
script:cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Use
rosdep
to install the package’s dependencies:sudo apt-get update
rosdep update && rosdep install --from-paths ${ISAAC_ROS_WS}/src/isaac_ros_pose_estimation/isaac_ros_centerpose --ignore-src -y
Build the package from source:
cd ${ISAAC_ROS_WS} && \ colcon build --symlink-install --packages-up-to isaac_ros_centerpose --base-paths ${ISAAC_ROS_WS}/src/isaac_ros_pose_estimation/isaac_ros_centerpose
Source the ROS workspace:
Note
Make sure to repeat this step in every terminal created inside the Docker container.
Because this package was built from source, the enclosing workspace must be sourced for ROS to be able to find the package’s contents.
source install/setup.bash
Run Launch File
Continuing inside the Docker container, convert the
onnx
model to a TensorRT engine plan:/usr/src/tensorrt/bin/trtexec --onnx=${ISAAC_ROS_WS}/isaac_ros_assets/models/centerpose_shoe/1/model.onnx --saveEngine=${ISAAC_ROS_WS}/isaac_ros_assets/models/centerpose_shoe/1/model.plan
Continuing inside the Docker container, install the following dependencies:
sudo apt-get update
sudo apt-get install -y ros-humble-isaac-ros-examples
Run the following launch file to spin up a demo of this package using the quickstart rosbag:
ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=centerpose,centerpose_visualizer interface_specs_file:=${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_centerpose/quickstart_interface_specs.json model_name:=centerpose_shoe model_repository_paths:=[${ISAAC_ROS_WS}/isaac_ros_assets/models]
Open a second terminal inside the Docker container:
cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Run the rosbag file to simulate an image stream:
ros2 bag play -l ${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_centerpose/quickstart.bag
Ensure that you have already set up your RealSense camera using the RealSense setup tutorial. If you have not, please set up the sensor and then restart this quickstart from the beginning.
Continuing inside the Docker container, install the following dependencies:
sudo apt-get update
sudo apt-get install -y ros-humble-isaac-ros-examples ros-humble-isaac-ros-realsense
Run the following launch file to spin up a demo of this package using a RealSense camera:
ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=realsense_mono_rect,centerpose,centerpose_visualizer model_name:=centerpose_shoe model_repository_paths:=[${ISAAC_ROS_WS}/isaac_ros_assets/models]
Ensure that you have already set up your Hawk camera using the Hawk setup tutorial. If you have not, please set up the sensor and then restart this quickstart from the beginning.
Continuing inside the Docker container, install the following dependencies:
sudo apt-get update
sudo apt-get install -y ros-humble-isaac-ros-examples ros-humble-isaac-ros-argus-camera
Run the following launch file to spin up a demo of this package using a Hawk camera:
ros2 launch isaac_ros_examples isaac_ros_examples.launch.py launch_fragments:=argus_mono,rectify_mono,centerpose,centerpose_visualizer model_name:=centerpose_shoe model_repository_paths:=[${ISAAC_ROS_WS}/isaac_ros_assets/models]
Ensure that you have already set up your ZED camera using ZED setup tutorial.
Continuing inside the Docker container, install dependencies:
sudo apt-get update
sudo apt-get install -y ros-humble-isaac-ros-examples ros-humble-isaac-ros-image-proc ros-humble-isaac-ros-zed
Run the following launch file to spin up a demo of this package using a ZED Camera:
ros2 launch isaac_ros_examples isaac_ros_examples.launch.py \ launch_fragments:=zed_mono_rect,centerpose,centerpose_visualizer model_name:=centerpose_shoe model_repository_paths:=[${ISAAC_ROS_WS}/isaac_ros_assets/models] \ interface_specs_file:=${ISAAC_ROS_WS}/isaac_ros_assets/isaac_ros_centerpose/zed2_quickstart_interface_specs.json
Note
If you are using the ZED X series, replace zed2_quickstart_interface_specs.json with zedx_quickstart_interface_specs.json in the above command.
Visualize Results
Open a new terminal inside the Docker container:
cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \ ./scripts/run_dev.sh
Visualize and validate the output of the package with
rqt_image_view
:ros2 run rqt_image_view rqt_image_view /centerpose/image_visualized
After about 1 minute, your output should like this:
Use Different Models
NGC has CenterPose class models that can detect other objects. Check them out here.
Troubleshooting
Isaac ROS Troubleshooting
For solutions to problems with Isaac ROS, see troubleshooting.
Deep Learning Troubleshooting
For solutions to problems with using DNN models, please check here.
API
Usage
Two launch files are provided to use this package. The first launch file launches isaac_ros_tensor_rt
, whereas the other one uses isaac_ros_triton
, along with
the necessary components to perform encoding on images and decoding of the CenterPose
network’s output.
Warning
For your specific application, these launch files may need to be modified. Please consult the available components to see the configurable parameters.
Launch File |
Components Used |
---|---|
|
DnnImageEncoderNode, TensorRTNode, CenterPoseDecoderNode, CenterPoseVisualizerNode |
|
DnnImageEncoderNode, TritonNode, CenterPoseDecoderNode, CenterPoseVisualizerNode |
CenterPoseDecoderNode
ROS Parameters
ROS Parameter |
Type |
Default |
Description |
---|---|---|---|
|
|
|
An array of two integers that represent the size of the 2D keypoint decoding from the network output. |
|
|
|
This parameter is used to scale the cuboid used for calculating the size of the objects detected. |
|
|
|
The threshold for scores values to discard. Any score less than this value will be discarded. |
|
|
|
The name of the category instance / object detected. |
ROS Topics Subscribed
ROS Topic |
Interface |
Description |
---|---|---|
|
The TensorList that contains the outputs of the CenterPose network. |
|
|
The CameraInfo of the original, undistorted image. |
ROS Topics Published
ROS Topic |
Interface |
Description |
---|---|---|
|
A |
CenterPoseVisualizerNode
ROS Parameters
ROS Parameter |
Type |
Default |
Description |
---|---|---|---|
|
|
|
Whether to draw the axes of the detected pose or not. |
|
|
|
The color of the bounding box drawn. Only the last 24 bits are used to draw the color. |
ROS Topics Subscribed
ROS Topic |
Interface |
Description |
---|---|---|
|
The original, undistorted image. |
|
|
The CameraInfo of the original, undistorted image. |
|
|
The detections made by the CenterPose decoder node. |
ROS Topics Published
ROS Topic |
Interface |
Description |
---|---|---|
|
An image containing the detection’s bounding box reprojected onto the image and, optionally, the axes of the detected objects. |